Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Dent ; 134: 104551, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201776

RESUMO

OBJECTIVE: To analyze the effect of P11-4 self-assembly peptide on cell viability and osteogenic capacity of SCAPs through mineral deposition and gene expression of osteogenic markers. METHODS: SCAPs were seeded in contact with P11-4 (10 µg/ml, 100 µg/ml and 1 mg/ml) solution. Cell viability was evaluated using a colorimetric assay MTT: 3-(4,5-dimethyl-thiazolyl-2)-2,5- diphenyltetrazolium bromide) in an experimental time of 24, 48 and 72 h (n = 7). Mineral deposition and quantification provided by the cells was tested using the Alizarin Red staining and Cetylpyridinium Chloride (CPC), respectively, after 30 days (n = 4). Gene expression of Runt-related transcription factor 2 (RUNX2), Alkaline phosphatase (ALP) and Osteocalcin (OCN) was quantified using quantitative polymerase chain reaction (RT-qPCR), at 3 and 7 days with Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the housekeeping gene, and relative gene expression was measured using the ΔΔCq method. Data were analyzed using Kruskall-Wallis followed by multiple comparisons, and T-test for gene expression with α=0.05. RESULTS: All tested concentrations (10 µg/ml, 100 µg/ml and 1 mg/ml) were not cytotoxic at time 24 and 48 h. After 72 h, a slight decrease in cell viability was observed for the lowest concentration (10 µg/ml). The concentration of 100 µg/ml P11-4 showed the highest mineral deposition. However, qPCR analysis of P11-4 (10 µg/ml) showed upregulation of RUNX2 and OCN at 3 days, with downregulation of ALP at 3 and 7d CONCLUSION: P11-4 did not affect cell viability, induced mineral deposition in SCAPs, and upregulated the expression of RUNX2 and OCN genes at 3 days, while downregulating ALP expression at 3 and 7 days. CLINICAL SIGNIFICANCE: Based on the results obtained in this study it can be stated that self-assembling peptide P11-4 is a potential candidate to induce mineralization on dental stem cells for regenerative purposes and also for a clinical use as a capping agent without compromising the cells health.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteogênese/genética , Papila Dentária/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Proliferação de Células , Células Cultivadas
2.
Braz Dent J ; 31(4): 431-439, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901721

RESUMO

The aim of this study was to evaluate the Streptococcus mutans biofilm influence on the roughness (Ra), gloss (GU), surface hardness (KHN) and flexural strength (FS) of high viscosity bulk fill composites. Filtek Bulk Fill (FBF), Tetric N Ceram Bulk Fill (TNC), X-tra fil Bulk Fill (XF) and Filtek Z350 (FZ) were used. Ten discs of each composite were prepared for Ra, KHN and GU and 20 bars for the FS. After 24 h, specimens were polished and initial analyzes performed. Samples were sterilized and subjected to biodegradation for 7 days and final analyzes performed. Representative samples of each group were evaluated in Scanning Electron Microscope. Data were submitted to ANOVA two factors and Tukey test. XF presented the highest values (p<0.05) of Ra before and after biodegradation (0.1251; 0.3100), and FZ (0.1443) the lowest after biodegradation (p<0.05). The highest GU values (p<0.05) were observed for FZ (71.7; 62) and FBF (69.0; 64.6), and the lowest (p<0.05) for TNC (61.4; 53.3) and XF (58.5; 53.5), both before and after biodegradation. For KHN the highest values were obtained by XF (151.7; 106), and the (p< 0.05) lowest values for TNC (62.2; 51.8), both before and after biodegradation. The highest values (p<0.05) of FS were observed for FZ (127.6) and the lowest (p<0.05) for TNC (86.9); after biodegradation, XF (117.7) presented the highest (p<0.05) values compared to TNC and FZ." In conclusion, biodegradation increased Ra and decreased GU and KHN for all. Concerning FS, degradation provided a significant decreased value only for FZ.


Assuntos
Resistência à Flexão , Streptococcus mutans , Dureza , Teste de Materiais , Propriedades de Superfície
3.
J Appl Oral Sci ; 27: e20180262, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508789

RESUMO

The incorporation of antimicrobials in the composites as an attempt to reduce bacterial adhesion without jeopardizing mechanical properties is a challenge for Dentistry. OBJECTIVE To evaluate the bacterial adhesion and physical properties of a composite containing the methacrylate triclosan- derivative monomer (TM). METHODOLOGY TM was synthesized and added to an experimental composite. Samples were divided into two groups: Control and TM (13.4 wt%). Antibacterial Activity: Three specimens of each material were prepared and placed on bacterial suspensions of Streptococcus mutans for 1, 5 and 10 days. After these periods the counting of the colonies (log10) was performed. Assays was performed in triplicate. Physical Properties: Three-body Abrasion (TBA): Ten specimens of each material were prepared and stored at 37°C/24 h. The surface roughness (Ra) and hardness (KHN) were analyzed. Next, the specimens were submitted to abrasive wear (30,000 cycles) and re-evaluated for Ra and KHN; Sorption/solubility (SS): cylindrical specimens (n=10) were prepared and weighted. The specimens were immersed in deionized water for 7 days at 37°C and then their weight was verified again. SS were calculated using accepted formulas; Diametral tensile strength (DTS): specimens (n=10) underwent test performed in an Instron universal testing machine at a crosshead speed of 1 mm/min. Data were submitted to appropriate statistical tests according to data distribution and assay (p<0.05). RESULTS Bacterial Adhesion: TM showed a significant reduction on biofilm accumulation in the evaluated periods: 1 day (1.537±0.146); 5 days (2.183±0.138) and 10 days (4.469±0.155) when compared with Control: 1 day (4.954±0.249); 5 days (5.498±0.257) and 10 days (6.306±0.287). Physical Properties: For TBA, SS and DTS no significant difference was found between groups Control and TM. The incorporation of methacrylate triclosan-based monomer in the experimental composite reduce bacterial adhesion of S. mutans and did not affect important polymer properties.


Assuntos
Antibacterianos/química , Resinas Compostas/química , Metacrilatos/química , Triclosan/química , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Contagem de Colônia Microbiana , Resinas Compostas/farmacologia , Testes de Dureza , Teste de Materiais , Metacrilatos/farmacologia , Valores de Referência , Reprodutibilidade dos Testes , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo , Escovação Dentária , Triclosan/farmacologia
4.
J. appl. oral sci ; 27: e20180262, 2019. tab
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1019969

RESUMO

Abstract The incorporation of antimicrobials in the composites as an attempt to reduce bacterial adhesion without jeopardizing mechanical properties is a challenge for Dentistry. Objective: To evaluate the bacterial adhesion and physical properties of a composite containing the methacrylate triclosan- derivative monomer (TM). Methodology: TM was synthesized and added to an experimental composite. Samples were divided into two groups: Control and TM (13.4 wt%). Antibacterial Activity: Three specimens of each material were prepared and placed on bacterial suspensions of Streptococcus mutans for 1, 5 and 10 days. After these periods the counting of the colonies (log10) was performed. Assays was performed in triplicate. Physical Properties: Three-body Abrasion (TBA): Ten specimens of each material were prepared and stored at 37°C/24 h. The surface roughness (Ra) and hardness (KHN) were analyzed. Next, the specimens were submitted to abrasive wear (30,000 cycles) and re-evaluated for Ra and KHN; Sorption/solubility (SS): cylindrical specimens (n=10) were prepared and weighted. The specimens were immersed in deionized water for 7 days at 37°C and then their weight was verified again. SS were calculated using accepted formulas; Diametral tensile strength (DTS): specimens (n=10) underwent test performed in an Instron universal testing machine at a crosshead speed of 1 mm/min. Data were submitted to appropriate statistical tests according to data distribution and assay (p<0.05). Results: Bacterial Adhesion: TM showed a significant reduction on biofilm accumulation in the evaluated periods: 1 day (1.537±0.146); 5 days (2.183±0.138) and 10 days (4.469±0.155) when compared with Control: 1 day (4.954±0.249); 5 days (5.498±0.257) and 10 days (6.306±0.287). Physical Properties: For TBA, SS and DTS no significant difference was found between groups Control and TM. The incorporation of methacrylate triclosan-based monomer in the experimental composite reduce bacterial adhesion of S. mutans and did not affect important polymer properties.


Assuntos
Triclosan/química , Resinas Compostas/química , Metacrilatos/química , Antibacterianos/química , Valores de Referência , Solubilidade , Streptococcus mutans/efeitos dos fármacos , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo , Escovação Dentária , Triclosan/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Teste de Materiais , Contagem de Colônia Microbiana , Reprodutibilidade dos Testes , Resinas Compostas/farmacologia , Testes de Dureza , Metacrilatos/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...